Ash Space
GitHubHuggingFace
  • Contents
  • 🥑Resume / CV
    • Reseume / CV
  • 📄Paper Review
    • Paper List
      • [2017] Attention is all you need
      • [2023] CoVe : Chain of Verification Reduces Hallucination in Large Language Models
      • [2024] RAG Survey : A Survey on Retrieval-Augmented Text Generation for Large Language Models
      • [2023] Interleaving Retrieval with Chain-of-Thought for Knowledge-Intensive Multi-Step Questions
      • [2024] Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
      • [2020] ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
      • [2024] Retrieval Augmented Generation (RAG) and Beyond
      • [2009] Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods
      • [2024] Don't Do RAG : When Cache-Augmented Generation is All you Need for Knowledge Tasks
      • [2024] Text2SQL is Not Enough : Unifying AI and Database with TAG
  • 🗂️Research Article
    • Reference List
      • Dataset
      • LLM
      • Prompt Engineering
      • LLMops
      • RAG & Agent
      • Etc
    • Compounded AI System : The Shift from Models to Compound AI Systems
    • LLM과 Grounding
    • Essence of RAG
    • How to reduce Hallucinations
    • Golden Gate Claude Review
    • Editorial Thinking
    • Embedding을 평가하는 방법
    • 나야, Chunk
    • 당신.. Chunking이 뭔지 정확히 알아..?
    • 그래서 제일 좋은 Chunking이 뭔데?
    • 웅장한 대결 AI Agent와 Agentic AI
    • UV써도 괜찮아~ 딩딩딩딩딩
    • 아무도 RAG 평가 셋 만드는 것에 관심가지지 않아~
    • Linguistic Prompts
    • Chroma야, Chunking 평가를 어떻게 한다고?
    • Generations Never Easy
    • Model Context Protocol
    • Chill칠치 못한 Function Calling
    • RAG 평가지표 정복하기
    • LLM Quantization 방법론 알아보기
    • LLM은 더우면 헛소리를 해?
    • Text2SQL 넌 내꺼야!
  • 🏵️Conference
    • 일할맛 판교 3월 세미나
    • LangChainOpenTutorial를 진행하며
    • Talk: Prompt and Language The Science of Prompts 후기
    • 2024년 회고
    • 제 7회 Kako Tech Meet Up 후기
    • Moducon 2023 행사 후기
    • GDGXGDSC DevFest Happy Career 행사 후기
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #1
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #2
    • 맨땅에서 구축해본 개인화시스템 구축기 Session 후기
  • ♟️Basic
    • 00 Introduction
    • 01-1 LLM 지도
    • 01-2 LLM의 중추 트랜스포머 아키텍처 살펴보기
Powered by GitBook
On this page
  • 2025.
  • ~ 2024.
  1. Paper Review

Paper List

NLP & LLM & RAG & GenAI & Agent 에 대한 최신 논문 동향을 파악하고 리스트를 정리해보자!

Last updated 1 month ago

Posting을 남기는 논문도 있고, 그렇지 않은 논문도 있습니다! 연도별 Paper List에 해당하는 각 논 하단에 원본 링크가 있다면 해당 논문은 읽은 것이고, 그렇지 않다면 읽을 예정인 논문입니다 😁

2025.

  • HoarePrompt : Structural Reasoning About Program Correctness in Natural Language

  • SWI : Speaking with Intent in Large Language Models

  • 4bit-Quantization in Vector Embedding for RAG

  • GISTEmbed : Guided In-sample Selection of Training Negatives for Text Embedding Finetuning

  • LongSkywork : A Training Recipe for Efficiently Extending Context Length in Large Language Models

  • Multi-Field Adaptive Retrieval

  • BERGEN : A Benchmarking Library for Retrieval-Augemented Generation

  • NoLIMA : Long-Context Evaluation Beyond Literal Matching

  • RAGVAL : Automatic Dataset Creation and Evaluation for RAG System

  • Qwen2.5 Technical Report

  • Balancing Content Size in RAG-Text2SQL System

  • Semantic Captioning : Benchmark Dataset and Graph-Aware Few-Shot In-Context Learning in SQL2Text

  • SPSQL : Step-by-step Parsing Based Framework for Text-to-SQL Generation

  • PET-SQL : A Prompt-Enhanced Two-round Refinement of Text-to-SQL with Cross-consistency

  • Data Ambiguity Strikes Back: How Documentation Improves GPT's Text-to-SQL

  • Do We Need Domain-Specific Embedding Models? An Empirical Investigation

  • Enhancig Text-to-SQL Translation for Financial System Design

  • BM25S : Ordered of magnitude fasteer lexical search via eagger sparse scoring

  • MEDEC : A Benchmark for Medical Error Detection and Correction in Clinical notes

~ 2024.

  • RAFT : Adapting Language Model to Domain Specific RAG

https://arxiv.org/pdf/2402.16829
https://arxiv.org/pdf/2406.00605
https://arxiv.org/pdf/2410.20056
https://arxiv.org/pdf/2407.01102
https://arxiv.org/pdf/2502.05167
https://www.researchgate.net/publication/388465129_RAGVAL_Automatic_Dataset_Creation_and_Evaluation_for_RAG_Systems
https://arxiv.org/pdf/2412.15115
https://arxiv.org/pdf/2502.15723v1
https://arxiv.org/pdf/2310.18742
https://arxiv.org/pdf/2312.14725
Text2SQL is Not Enough : Unifying AI and Database with TAG
https://arxiv.org/pdf/2408.14717
Don't Do RAG : When Cache-Augmented Generation is All you Need for Knowledge Tasks
https://arxiv.org/pdf/2412.15605
https://arxiv.org/pdf/2407.03618
https://arxiv.org/pdf/2412.19260
Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods
https://dl.acm.org/doi/10.1145/1571941.1572114
Retrieval Augmented Generation (RAG) and Beyond
https://arxiv.org/pdf/2409.14924v1
ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
https://arxiv.org/pdf/2004.12832
Take a Step Back : Evoking Reasoning via Abstraction in Large Language Models
https://arxiv.org/pdf/2310.06117
https://arxiv.org/pdf/2403.10131
Interleaving Retrieval with Chain-of-Thought for Knowledge-Intensive Multi-Step Questions
https://arxiv.org/pdf/2212.10509
RAG Survey : A Survey on Retrieval-Augmented Text Generation for Large Language Models
https://arxiv.org/pdf/2404.10981
CoVe : Chain of Verification Reduces Hallucination in Large Language Models
https://arxiv.org/pdf/2309.11495
Attention is all you need
https://arxiv.org/pdf/1706.03762
📄
Page cover image