Ash Space
GitHubHuggingFace
  • Contents
  • 🥑Resume / CV
    • Reseume / CV
  • 📄Paper Review
    • Paper List
      • [2017] Attention is all you need
      • [2023] CoVe : Chain of Verification Reduces Hallucination in Large Language Models
      • [2024] RAG Survey : A Survey on Retrieval-Augmented Text Generation for Large Language Models
      • [2023] Interleaving Retrieval with Chain-of-Thought for Knowledge-Intensive Multi-Step Questions
      • [2024] Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
      • [2020] ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
      • [2024] Retrieval Augmented Generation (RAG) and Beyond
      • [2009] Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods
      • [2024] Don't Do RAG : When Cache-Augmented Generation is All you Need for Knowledge Tasks
      • [2024] Text2SQL is Not Enough : Unifying AI and Database with TAG
  • 🗂️Research Article
    • Reference List
      • Dataset
      • LLM
      • Prompt Engineering
      • LLMops
      • RAG & Agent
      • Etc
    • Compounded AI System : The Shift from Models to Compound AI Systems
    • LLM과 Grounding
    • Essence of RAG
    • How to reduce Hallucinations
    • Golden Gate Claude Review
    • Editorial Thinking
    • Embedding을 평가하는 방법
    • 나야, Chunk
    • 당신.. Chunking이 뭔지 정확히 알아..?
    • 그래서 제일 좋은 Chunking이 뭔데?
    • 웅장한 대결 AI Agent와 Agentic AI
    • UV써도 괜찮아~ 딩딩딩딩딩
    • 아무도 RAG 평가 셋 만드는 것에 관심가지지 않아~
    • Linguistic Prompts
    • Chroma야, Chunking 평가를 어떻게 한다고?
    • Generations Never Easy
    • Model Context Protocol
    • Chill칠치 못한 Function Calling
    • RAG 평가지표 정복하기
    • LLM Quantization 방법론 알아보기
    • LLM은 더우면 헛소리를 해?
    • Text2SQL 넌 내꺼야!
  • 🏵️Conference
    • 일할맛 판교 3월 세미나
    • LangChainOpenTutorial를 진행하며
    • Talk: Prompt and Language The Science of Prompts 후기
    • 2024년 회고
    • 제 7회 Kako Tech Meet Up 후기
    • Moducon 2023 행사 후기
    • GDGXGDSC DevFest Happy Career 행사 후기
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #1
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #2
    • 맨땅에서 구축해본 개인화시스템 구축기 Session 후기
  • ♟️Basic
    • 00 Introduction
    • 01-1 LLM 지도
    • 01-2 LLM의 중추 트랜스포머 아키텍처 살펴보기
Powered by GitBook
On this page
  • Ⅰ. RAG
  • Ⅱ. VectorDB
  • Ⅲ. Agent
  • Ⅳ. Conference
  1. Research Article
  2. Reference List

RAG & Agent

다양한 RAG에 대한 자료를 수집합니다.

Last updated 2 months ago

Ⅰ. RAG

RAG (Retriever Augmented Generation)에 관한 모든 레퍼런스를 소개합니다.

  • Core Library

    • LangChain

    • Langgraph

    • Langfuse

    • Langmem

  • Application Library

    • pyscript

    • Chainlit

    • Ollama

  • Reference

    • Langchain Open Tutorial :

Ⅱ. VectorDB

  • Vector db comparison

  • FAISS

  • HNSWlib

  • ChromaDB

  • Clickhouse

  • ParadeDB

Ⅲ. Agent

  • BabyAGI

  • Autonomous Agent

  • HAAS (Hierarchical Autonomous Agent Swarm)

  • Swarm

  • OpenDevin

  • OpenHands

  • AWS multi-agent-orchestrator

  • SmolAgent

  • Browser Use

  • Agent Laboratory

  • AiSuite

  • Agno

Ⅳ. Conference

  • if kakao 2024

    • 공공데이터를 활용한 RAG 기술구현 및 프레임워크 소개

    • 생성형 ai를 이용한 개체명 인식 (NER)

    • 나의 컨텍스트를 아는 친구, Context Aware AI Mate

  • Naver DAN24

    • 네이버 검색이 이렇게 좋아졌어? LLM의 Re-Ranking Ability 검색에 이식하기

    • 서치피드 : SERP를 넘어 SURF로! 검색의 새로운 물결

    • 사람을 대신해야 진짜 AI지? : LLM 기반 임베딩부터 검색 품질 자동 평가 모델까지

    • 벡터 검색의 정점에 오르다 : 최적의 뉴럴검색엔진으로 업그레이드 하기.

    • LLM for Search : 꽁꽁 얼어붙은 검색 서비스 위로 LLM이 걸어다닙니다.

https://www.langchain.com/
https://github.com/langchain-ai/langgraph
https://github.com/langfuse/langfuse
https://github.com/langchain-ai/langmem
https://github.com/pyscript/pyscript
https://github.com/Chainlit/chainlit
https://github.com/ollama/ollama
https://langchain-opentutorial.gitbook.io/langchain-opentutorial
https://superlinked.com/vector-db-comparison
https://github.com/facebookresearch/faiss
https://github.com/nmslib/hnswlib
https://github.com/chroma-core/chroma
https://clickhouse.com/
https://www.paradedb.com/
https://github.com/daveshap/OpenAI_Agent_Swarm
https://github.com/openai/swarm
https://github.com/AI-App/OpenDevin.OpenDevin
https://github.com/All-Hands-AI/OpenHands
https://github.com/awslabs/multi-agent-orchestrator
https://huggingface.co/blog/smolagents
https://github.com/browser-use/browser-use
https://github.com/SamuelSchmidgall/AgentLaboratory
https://github.com/andrewyng/aisuite
https://github.com/agno-agi/agno
https://www.youtube.com/watch?v=jCEgRK7GgXs&t=139s
https://www.youtube.com/watch?v=jYmOPXqdEC4
https://www.youtube.com/watch?v=DnJaHvIWt4w
https://dan.naver.com/24/sessions/604
https://dan.naver.com/24/sessions/620
https://dan.naver.com/24/sessions/591
https://dan.naver.com/24/sessions/587
https://dan.naver.com/24/sessions/588
🗂️
Page cover image