Ash Space
GitHubHuggingFace
  • Contents
  • 🥑Resume / CV
    • Reseume / CV
  • 📄Paper Review
    • Paper List
      • [2017] Attention is all you need
      • [2023] CoVe : Chain of Verification Reduces Hallucination in Large Language Models
      • [2024] RAG Survey : A Survey on Retrieval-Augmented Text Generation for Large Language Models
      • [2023] Interleaving Retrieval with Chain-of-Thought for Knowledge-Intensive Multi-Step Questions
      • [2024] Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
      • [2020] ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
      • [2024] Retrieval Augmented Generation (RAG) and Beyond
      • [2009] Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods
      • [2024] Don't Do RAG : When Cache-Augmented Generation is All you Need for Knowledge Tasks
      • [2024] Text2SQL is Not Enough : Unifying AI and Database with TAG
  • 🗂️Research Article
    • Reference List
      • Dataset
      • LLM
      • Prompt Engineering
      • LLMops
      • RAG & Agent
      • Etc
    • Compounded AI System : The Shift from Models to Compound AI Systems
    • LLM과 Grounding
    • Essence of RAG
    • How to reduce Hallucinations
    • Golden Gate Claude Review
    • Editorial Thinking
    • Embedding을 평가하는 방법
    • 나야, Chunk
    • 당신.. Chunking이 뭔지 정확히 알아..?
    • 그래서 제일 좋은 Chunking이 뭔데?
    • 웅장한 대결 AI Agent와 Agentic AI
    • UV써도 괜찮아~ 딩딩딩딩딩
    • 아무도 RAG 평가 셋 만드는 것에 관심가지지 않아~
    • Linguistic Prompts
    • Chroma야, Chunking 평가를 어떻게 한다고?
    • Generations Never Easy
    • Model Context Protocol
    • Chill칠치 못한 Function Calling
    • RAG 평가지표 정복하기
    • LLM Quantization 방법론 알아보기
    • LLM은 더우면 헛소리를 해?
    • Text2SQL 넌 내꺼야!
  • 🏵️Conference
    • 일할맛 판교 3월 세미나
    • LangChainOpenTutorial를 진행하며
    • Talk: Prompt and Language The Science of Prompts 후기
    • 2024년 회고
    • 제 7회 Kako Tech Meet Up 후기
    • Moducon 2023 행사 후기
    • GDGXGDSC DevFest Happy Career 행사 후기
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #1
    • 모두를 위한 한국어 오픈액세스 언어모델 못다한 이야기 (feat. 모두연) #2
    • 맨땅에서 구축해본 개인화시스템 구축기 Session 후기
  • ♟️Basic
    • 00 Introduction
    • 01-1 LLM 지도
    • 01-2 LLM의 중추 트랜스포머 아키텍처 살펴보기
Powered by GitBook
On this page
  • Ⅰ. Reference
  • Ⅱ. LLM Training
  • Ⅲ. Methods
  • Ⅳ. Quantizations
  • Ⅴ. Alignments
  • Ⅵ. Etc
  1. Research Article
  2. Reference List

LLM

다양한 LLM에 대한 자료를 수집합니다.

Last updated 2 months ago

Ⅰ. Reference

다양한 LLM 관련 레퍼런스를 소개합니다.

  • 모델학습시 GPU 사용량 계산하는 사이트

  • Open Ai : Transformer Debugger

  • Langchain Visualizer

  • RingAttention

  • Awesome LLM Tabular

  • Awesome LLM

  • Awesome Korean LLM

  • MiniGPT-4 (opensource)

  • transformer library tutorial

  • Py2Mojo

  • Awesome Korean speech recognition

  • Open Korean instructions

  • Practical MLOps

  • Embedding (ratsgo 한국어 임베딩 도서 코드)

Ⅱ. LLM Training

LLM 학습에 대한 레퍼런스를 소개합니다.

  • WhatsApp : Finetune a LLM to speak like you based on your WhatsApp Conversations

  • KB-ALBERT : KB국민은행에서 제공하는 경제/금융 도메인에 특화된 한국어 ALBERT 언어모델

  • 딥러닝 파이토치 교과서 - 입문부터 파인튜닝까지 wikidocs

  • 전이학습 기반 NLP

  • 자연어처리 : 토큰화

  • 딥러닝을 위한 자연어 처리 입문

  • SentencePiece를 이용한 효과적인 한국어 토크나이저 만들기 (예제)

  • 언어모델의 말솜씨? NEFTune 한 스푼으로 업그레이드 (예제)

Ⅲ. Methods

다양한 학습 방법론에 대한 레퍼런스를 소개합니다. (Pre-Training / Fine-Tuning)

  • PPO

  • RLHF (Human Feedback)

  • TransformersData Augementation

  • Domain Adaptation : Generative Pseudo Labeling(GPL)

  • X Algorithm

  • MergeKit

Ⅳ. Quantizations

LLM 경량화에 대한 레퍼런스를 소개합니다.

  • PEFT

  • LoRA

  • QLoRA

  • Knwoledge Distillation

Ⅴ. Alignments

LLM Alignment에 대한 레퍼런스를 소개합니다.

  • Offline-DPO

  • Online-DPO

  • OpenAi Alignment handbook

  • LoRA Instruct

Ⅵ. Etc

  • FlashAttention : Fast and memory-efficient exact attention

  • Speculative Decoding : Fast Inference from Transformers via Speculative Decoding

https://huggingface.co/spaces/Vokturz/can-it-run-llm
https://github.com/openai/transformer-debugger
https://github.com/amosjyng/langchain-visualizer
https://github.com/lhao499/RingAttention
https://github.com/johnnyhwu/Awesome-LLM-Tabular
https://github.com/Hannibal046/Awesome-LLM
https://github.com/NomaDamas/awesome-korean-llm
https://github.com/Vision-CAIR/MiniGPT-4
https://huggingface.co/docs/transformers/v4.39.1/ko/index
https://github.com/NielsRogge/Transformers-Tutorials
https://github.com/msaelices/py2mojo
https://github.com/rtzr/Awesome-Korean-Speech-Recognition
https://github.com/HeegyuKim/open-korean-instructions
https://github.com/paiml/practical-mlops-book
https://github.com/ratsgo/embedding
https://github.com/Ads-cmu/WhatsApp-Llama
https://github.com/KB-AI-Research/KB-ALBERT
https://wikidocs.net/book/2788
https://brunch.co.kr/@learning/12
https://real-myeong.tistory.com/41
https://wikidocs.net/book/2155
https://devocean.sk.com/blog/techBoardDetail.do?ID=164570&boardType=techBlog#none
https://devocean.sk.com/blog/techBoardDetail.do?page=&boardType=undefined&query=&ID=165452&searchData=&subIndex=#none
https://velog.io/@uonmf97/HUFS-RL-%EA%B0%95%ED%99%94%ED%95%99%EC%8A%B5-Reinforcement-Learning-PPO-Proximal-PolicyOptimization
https://tech.scatterlab.co.kr/luda-rlhf/
https://github.com/varunkumar-dev/TransformersDataAugmentation
https://github.com/UKPLab/gpl
https://github.com/twitter/the-algorithm-ml
https://github.com/arcee-ai/mergekit?tab=readme-ov-file#merge-methods
https://bigwaveai.tistory.com/79
https://velog.io/@qtly_u/%EB%AA%A8%EB%8D%B8-%EA%B2%BD%EB%9F%89%ED%99%94-%EA%B8%B0%EB%B2%95-Knowledge-Distillation
https://jackyoung96.github.io/2024/03/24/DAP-OnlineDAP/
https://github.com/huggingface/alignment-handbook
https://github.com/leehanchung/lora-instruct
https://github.com/Dao-AILab/flash-attention
https://arxiv.org/pdf/2211.17192
🗂️
Page cover image